Tag: Environment

Fighting Pollution With Seaweed

Coastal seaweed farms can help fight environmental damage.

Nitrogen is a common fertilizer for agriculture, but it comes with an environmental and financial price tag. Once nitrogen reaches the ocean, it disperses randomly, damaging various ecosystems. As a result, the state local authorities spend a great deal of money on reducing nitrogen concentrations in water, including in the Mediterranean Sea.

A new study by Tel Aviv University and University of California, Berkeley suggests that establishing seaweed farms in areas where freshwater rivers or streams meet the oceans, or so-called “river estuaries”, significantly reduces nitrogen concentrations and prevents pollution in marine environments.

As part of the study, the researchers built a large seaweed farm model for growing the ulva sp. green macroalgae in the Alexander River estuary, hundreds of meters from the open sea. The Alexander River was chosen because the river discharges polluting nitrogen from nearby upstream fields and towns into the Mediterranean Sea. Data for the model were collected over two years from controlled cultivation studies.

The study was headed by doctoral student Meiron Zollmann, under the joint supervision of Prof. Alexander Golberg of the Porter School of Environmental and Earth Sciences and Prof. Alexander Liberzon of the School of Mechanical Engineering at The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, and was conducted in collaboration with Prof. Boris Rubinsky of the Faculty of Mechanical Engineering at UC Berkeley. It was published in the prestigious journal Communications Biology.

“My laboratory researches basic processes and develops technologies for aquaculture,” explains Prof. Golberg. “We are developing technologies for growing seaweed in the ocean in order to offset carbon and extract various substances, such as proteins and starches, to offer a marine alternative to terrestrial agricultural production. In this study, we showed that if seaweed is grown according to the model we developed, in rivers’ estuaries, they can absorb the nitrogen to conform to environmental standards and prevent its dispersal in water and thus neutralize environmental pollution. This way, we actually produce a kind of ‘natural decontamination facility’ with significant ecological and economic value, as seaweed can be sold as biomass for human use.”

Profitable and Environmentally Friendly

“Our model allows marine farmers, as well as government and environmental bodies, to know in advance what the impact will be and what the products of a large seaweed farm will be – before setting up the actual farm,” adds Meiron Zollmann. “Thanks to mathematics, we know how to make the adjustments also concerning large agricultural farms and maximize environmental benefits, including producing the agriculturally desired protein quantities.”

“The whole world is moving towards green energy, and seaweed can be a significant source,” adds Prof. Liberzon, “and yet today, there is no single farm with the proven technological and scientific capability. The barriers are also scientific: We do not really know what the impact of a huge farm will be on the marine environment. It is like transitioning from a vegetable garden outside the house to endless fields of industrial farming. Our model provides some of the answers, hoping to convince decision-makers that such farms will be profitable and environmentally friendly. Furthermore, one can imagine even more far-reaching scenarios. For example, green energy: If we knew how to utilize the growth rates for energy in better percentages, it would be possible to embark on a one-year cruise with a kilogram of seaweed, with no additional fuel beyond the production of biomass in a marine environment.”

“The interesting connection we offer here is growing seaweed at the expense of nitrogen treatment,” concludes Prof. Golberg. “In fact, we have developed a planning tool for setting up seaweed farms in estuaries to address the environmental issue while producing economic benefit. We offer the design of seaweed farms in river estuaries containing large quantities of agriculturally related nitrogen residues to rehabilitate the estuary and prevent nitrogen from reaching the ocean while growing the seaweed itself for food. In this way, aquaculture complements terrestrial agriculture.”

Featured image: The cultivation reactor that was used as the base of the model

Diminishing at the Edges

TAU study reveals: overfishing severely harms marine protected areas around the world

A new study by Tel Aviv University reveals significant ecological damage to many marine protected areas (MPAs) around the world. A strong “edge effect” was observed, resulting in a 60% reduction in the fish population living on their outer edges (1-1.5 km), compared to the core areas. The “edge effect” significantly diminishes the effective size of those areas, and largely stems from human pressures, first and foremost overfishing at their borders.

Marine protected areas were designed to preserve marine ecosystems, and help to conserve and restore fish populations and marine invertebrates whose numbers are increasingly dwindling due to overfishing. The effectiveness of the protected areas has been proven in thousands of studies conducted worldwide. At the same time, most studies sample only their “inside” and “outside”, and there still is a knowledge gap about what happens in the space between their core and areas around them that are open for fishing.

The study was conducted by Sarah Ohayon, a doctoral student at the laboratory of Prof. Yoni Belmaker, School of Zoology, The George S. Wise Faculty of Life Sciences, and The Steinhardt Museum of Natural History at Tel Aviv University. The study was recently published in the Nature Ecology & Evolution Journal.

 

The “Edge Effect”

When a protected area functions properly, the expectation is that the recovery of the marine populations within it will result in a spillover, a process where fish and marine invertebrates migrate outside its borders. In this way, the protected area can contribute not only to the conservation of marine nature, but also to the renewal of fish populations surrounding it that have dwindled due to overfishing.

To identify the dominant spatial pattern of marine populations from within the protected areas to the surrounding areas (that are open for fishing), the researchers analyzed marine populations from dozens of protected areas located in different parts of the oceans. 

“When I saw the results, I immediately understood that we are looking at a pattern of edge effect”, says Ohayon. “The edge effect is a well-studied phenomenon in terrestrial protected areas, but surprisingly it has not yet been studied empirically in MPAs. “This phenomenon occurs when there are human disturbances and pressures around the protected area, such as hunting/fishing, noise or light pollution that reduce the size of natural populations within the protected areas, close to their borders”.

 

No-Take Marine Protected Areas Are Too Small

The researchers found that 40% of the no-take MPAs (areas where fishing activity is completed prohibited) around the world are less than 1 km2, which means that entire area is likely to experience an edge effect. In total, 64% of all no-take MPAs in the world are smaller than 10 km2 and may hold only about half (45-56%) of the expected population size in their area compared to a situation without an edge effect. These findings indicate that the global effectiveness of existing no-take areas is far less than previously thought.

It should be emphasized that the edge effect pattern does not eliminate the possibility of fish spillover, and it is quite plausible that fishers still enjoy large fish coming from within the protected areas. This is evidenced by the concentration of fishing activity at their borders. At the same time, the edge effect makes it clear to us that marine populations near the borders of the protected areas are declining at a faster rate than the recovery of the populations surrounding them.

 

Buffer, Enlarge and Enforce

The study findings also show that in protected areas with buffer zones around them, no edge effect patterns were recorded, but rather a pattern consistent with fish spillover outside their borders. Additionally, a smaller edge effect was observed in well-enforced protected areas than in those where illegal fishing was reported.

“These findings are encouraging, as they signify that by putting buffer zones in place, managing fishing activity around marine protected areas and improving enforcement, we can increase the effectiveness of the existing protected areas and most probably also increase the benefits they can provide through fish spillover”, adds Ohayon.

“When planning new marine protected areas, apart from the implementation of regulated buffer zones, we recommend that the no-take MPAs targeted for protection be at least 10 km2 and that their shape be as round as possible. These measures will reduce the edge effect. Our research findings provide practical guidelines for improving the planning and management of marine protected areas, so that we can do a better job of protecting our oceans.” 

Featured image: Photo credit: Dr. Shevy Rothman

He’s Bringing Plastic Back

TAU alumnus Tal Cohen and his company “Plastic Back” converts plastic waste back to its original form.

We use plastic in almost every aspect of our lives. It is cheap in production, durable and can be reused multiple times. The problem is, though, that 350M tons of plastic waste is produced annually, out of which only 8% is recycled. To counter the environmental hazard, laws and regulations, are implemented towards reducing landfill and increasing recycling. The EU has pledged to reduce landfilling to 10% of its current capacity by 2030. We spoke with Tal Cohen, a TAU alumnus with an MBA from the Coller School of Management and founder of a startup company called “Plastic Back”, who may have found the perfect solution.

The Big Savior Becomes the Big Offender

When plastic was originally introduced, 70 years ago, it was commonly believed that it would contribute to save the environment. “When plastic was first introduced, it was actually thought to be the big savior of the future environment, replacing the use of ivory, tortoise shell and corals. While petroleum came to the relief of the whale, plastic has given the elephant, the tortoise and the coral a respite in their native haunts,” says Tal. With time, however, it went from being the big savior to instead becoming recognized as a major environmental hazard,” Tal muses. Over the past 70 years since its invention, 8.3 billion tons of plastic waste has been accumulated worldwide.

And how is plastic produced? “After developing over millions of years underground, crude oil is drilled out and extracted. It is then sent to be refined by the petrochemical industry, after which it can be used for various purposes, such as fuel for cars and… plastic production,” explains Tal. Plastic is, in other words, produced from oil, a non-renewable source of energy.  

Tal is well acquainted with plastic. After earning his B.Sc. in Marine Sciences and Environment at the Ruppin Academic Center, Tal Cohen worked as a marine biologist. Three kilometers offshore, surrounded by fish and – you guessed it – plastic, he would research, work in the lab and dive. After a few years, he went on to study for an MBA at Tel Aviv University: “I wanted to learn how to develop technologies and businesses that are focused on ecological solutions. While studying ‘Entrepreneurship and Innovation Technology Management’ at TAU, I was also working at a venture capital fund, handling portfolios of ten renewable energy companies. It taught me a lot about the needs of startups in the renewables field.”

 

Plastic Back’s technology offers waste handlers to help treat their waste streams and create profit, as an alternative to landfill

Bring it Back: A Chemical Solution

Tal Cohen and his Israeli based startup company “Plastic Back” offers an interesting solution: “By way of ‘reverse engineering’, we are able to convert plastic waste back to its original, valuable form of oils, waxes and other valuable chemicals. With unique chemicals, ratios and timing, our technology breaks down the carbon-to-carbon bonds of the plastic polymer to liquid fractions that can be (re)used by the petrochemical industry.” Brilliant, isn’t it?

“While transforming plastic back to oil through burning is already done, that requires very high temperatures, between 600-1000 degrees Celsius, which constitutes an environmental and financial burden. The real innovation here, is that we manage to convert the plastic to oil by chemical means only, and at room temperature. So there’s an environmental advantage which is expressed financially, and it is also advantageous energy-wise. The goal is to offer an alternative to the traditional drilling for additional non-renewable oil.”

The idea, Tal got while he was working with one of the aforementioned portfolio companies: “Once I felt like I had learnt enough about the startup world and what setting up a startup entailed, I went on a mission to find technologies. At The Hebrew University, they had a technology in place from 2016-17. It spoke to me, as it was related to plastic, which I was intimately familiar with from my time working underwater as a marine biologist, and I also knew that the renewables field is evolving.”

“The technology was in place, and so I decided to find out if there was any business interest for it. In 2019, I attended Shell’s competition in Holland, which is the largest energy competition in the EU, where more than 250 companies competed during 10 days of business and technological validation. We ended up in 2nd place. We knew then that there was demand for the crude oil which we were able to convert the plastic back to. Shell was willing to invest and to pay some money up front, so we had some starting capital. I went ahead and founded the company. We have since found an angel investor who invested a certain amount, have received recognition from the European Commission and are taking part in the EU accelerator program.”

Making Waste Vanish and Renewing Non-renewables

Who are the winners with this initiative? “Plastic Back enables a shift from a linear to a circular economy, by closing the loop between the petrochemical industry (including companies such as Shell), which is currently dependent of crude oil drilling and operating under increasingly heavy regulation and pressure, and the waste handlers who receive millions of tons of plastic waste from waste manufacturers, such as agriculture, factories and hospitals and medical devices, most of which goes to landfill. The waste handlers are seeking alternatives, especially as there’s been a fivefold increase in landfill price since 2019. The waste manufacturers, on their side, would gain the ability to treat their waste on site/close by, save expenses on removal and treatment fee and even create profits from their plastic waste.”

Tal is not planning to rest in the coming years, “The research and development phase of our project is completed for the most part. Last year, we successfully proved that there is demand for what we are offering. We have received a grant from the Ministry of Energy to set up our first pilot facility together with an industrial partner in the South of Israel in 2022. A year and a half after that, we would like to set up our first facilities. In five years from now, we should have two or three active facilities, hopefully one of them here in Israel and the rest in Europe.”

 

Tal Cohen presenting his startup at TAU’s Coller $100,000 Startup Competition in July 2021

Featured image: By way of ‘reverse engineering’, Tal’s team is able to convert plastic waste back to its original form.

Our Planet in the Hands of Academia

TAU to launch a multidisciplinary research center on climate change with the aim of finding practical solutions to the global crisis.

Tel Aviv University will soon launch the multidisciplinary Center for Climate Change Action, with the aim of finding practical solutions to the global crisis. The new center, the first of its kind in Israel, will operate in the framework of the Porter School of the Environment and Earth Sciences, and will cover the subject from all angles, utilizing the knowledge, resources and capabilities of all faculties on campus (engineering, medicine, the exact sciences, life sciences and earth sciences, law, the social sciences, humanities, and the arts). The center will collaborate with representatives from industry, academia and government, in Israel and around the world, in an effort to develop technological solutions, raise public awareness, promote legislation and regulations, and more. Furthermore, the center will support the development of new and existing projects, award scholarships to students, develop a fellowship program, fund mentorships and advanced training programs, and launch an accelerator in collaboration with industry representatives. In addition, the center will publish annual position papers and organize international conferences.

“The time has come to find solutions”

Prof. Ariel Porat, President of Tel Aviv University: “Tel Aviv University is a partner in the need for all humankind to deal with the dangers of global warming and climate change. Confronting this challenge requires a view from many perspectives: technological, social, moral, economic, sociological, legal and more. The huge variety of disciplines at Tel Aviv University allows for such a broad view. This new multidisciplinary center that will deal with climate change joins the several multidisciplinary centers we have established in the last two years at the university, including the Center for Artificial Intelligence and Data Science, the Center for Combating Pandemics, and the Center for Quantum Science and Technology.” The center will be headed by Prof. Colin Price, Head of the university’s Department of Environmental Studies, who explains that “Basic research is important, but since we already know that there is a problem with global warming, and we know what causes the problem, the time has come to find solutions, from every perspective and every discipline. There are technological solutions that will come from engineering and the exact sciences, but there are also solutions that will come from regulation, public policy, and even psychology. After all, you don’t need modern technology to mobilize public support for action, and without this support, technological solutions will not be implemented. The Center for Climate Change Action will be a cross-campus collaboration, with partners in high-tech, industry, government and civil society.” According to Prof. Price, the main goal of the research center, and of humanity in general, is to first and foremost address the source of the problem, namely the greenhouse gases that humans emit into the atmosphere, and to meet the target of net zero greenhouse gas emissions by 2050, as defined by the UN. “We have a total of 30 years to find solutions and reach a global balance, and there are still a lot of problems to solve,” adds Prof. Price. ”A good example of this is solar energy. It’s cheaper to generate electricity from solar energy today  than from a power plant that uses fuel, coal or even natural gas, but the solar energy must be transported to people’s homes, the electricity generated must be stored at night, that is, in batteries, and you need infrastructure to carry the energy to population centers. We need to invest in finding practical solutions today, in order to avoid the gloomy forecasts of tomorrow.” Prof. Colin Price: “We have a total of 30 years to find solutions and reach a global balance, and there are still a lot of problems to solve.”


© CFTAU  | all rights reserved
Charitable registration: 124035643RR0001

TO TOP